The generator matrix
1 0 0 0 1 1 1 X 1 1 X X 1 1 0 1 0 1 0 1 1 1 1 X X 1 0 X 1 X X 1 0 0 1 1 X X 1 1 X 1 1 0 X X X X 0 1 1 1 1 1 0 X 1 1 1 1 X 1 X 1 0 1 1
0 1 0 0 0 0 0 X 1 X+1 1 1 X+1 X+1 1 0 X 1 1 X X+1 X 1 1 1 0 X X X+1 1 X 0 1 1 1 0 1 X X+1 1 1 1 X+1 0 1 X 1 0 X X+1 1 0 0 0 1 1 X+1 1 0 X 0 1 1 X+1 X 1 0
0 0 1 0 0 1 X+1 1 X+1 1 X 1 0 X X+1 X 1 1 X X+1 1 X 0 X 1 0 0 1 0 1 1 1 1 X X+1 X+1 1 1 X X+1 0 X+1 X 1 0 0 0 1 0 0 X+1 X 0 X 1 X+1 1 1 0 X 0 X 0 1 1 X 0
0 0 0 1 1 1 0 1 X X+1 X+1 0 0 1 1 0 0 X X+1 X+1 X+1 1 0 X X X 1 1 1 0 X X+1 X+1 0 X 1 1 1 X+1 1 X+1 X+1 X 0 X+1 1 X+1 1 1 X+1 1 1 X+1 X+1 X 0 X X+1 1 X 1 1 1 1 1 X 0
0 0 0 0 X 0 0 X 0 0 0 X X X X X X X X X X 0 0 X 0 X 0 0 X X X X 0 0 0 0 X 0 0 X X X 0 0 0 X 0 X X 0 X X 0 X X 0 X 0 0 X X X 0 0 X 0 0
0 0 0 0 0 X X X X X 0 X 0 0 X 0 X 0 X 0 0 X X X X X X X X 0 0 X X X 0 0 0 0 X 0 0 X 0 X X X 0 0 0 X X X 0 X X X X 0 X X X 0 X 0 X X X
generates a code of length 67 over Z2[X]/(X^2) who´s minimum homogenous weight is 60.
Homogenous weight enumerator: w(x)=1x^0+31x^60+142x^61+98x^62+91x^64+156x^65+67x^66+70x^68+102x^69+50x^70+36x^72+58x^73+20x^74+15x^76+36x^77+12x^78+8x^80+18x^81+9x^82+4x^84
The gray image is a linear code over GF(2) with n=134, k=10 and d=60.
This code was found by Heurico 1.16 in 0.21 seconds.